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a b s t r a c t

Minimum average variance estimation (MAVE, Xia et al. (2002) [29]) is an effective
dimension reduction method. It requires no strong probabilistic assumptions on the
predictors, and can consistently estimate the central mean subspace. It is applicable to a
wide range of models, including time series. However, the least squares criterion used in
MAVE will lose its efficiency when the error is not normally distributed. In this article, we
propose an adaptiveMAVEwhich can be adaptive to different error distributions.We show
that the proposed estimate has the same convergence rate as the original MAVE. An EM
algorithm is proposed to implement the newadaptiveMAVE. Using both simulation studies
and a real data analysis, we demonstrate the superior finite sample performance of the
proposed approach over the existing least squares basedMAVEwhen the error distribution
is non-normal and the comparable performance when the error is normal.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Since the pioneer work of Li [14], sufficient dimension reduction has received much attention as an efficient tool to
tackle the challenging problem of high dimensional data analysis. The basic idea of sufficient dimension reduction in a
regression problem is to replace the original high dimensional predictor with its appropriate low dimensional projection
while preserving full regression information. Let y and X be a univariate response and a p-dimensional predictor vector
respectively. A d-dimensional (d ≤ p) subspace S = Span{Bp×d = (β1, β2, . . . , βd)} is called a dimension reduction subspace
of y|X if

yyX|PSX, (1.1)

where y indicates independence and P(·) stands for an orthogonal projection operator in the standard inner product. When
the intersection of all subspaces satisfying (1.1) also satisfies (1.1), it is called the central subspace (CS; [7–9]) and is denoted
by Sy|X. Its dimension, denoted by D, is then called the structural dimension of y|X. When the conditional mean function is
of primary interest, the objective of sufficient dimension reduction is to seek a d-dimensional subspace S such that

yyE(y|X)|PSX. (1.2)

Subspaces satisfying condition (1.2) are called mean dimension reduction subspaces [10]. When the intersection of all
subspaces satisfying condition (1.2) also satisfies condition (1.2), it is called the central mean subspace (CMS) and is denoted
by SE(y|X). Its dimension is called the structural dimension of E(y|X). As shown in [9,30], under mild conditions, the CS and
the CMS exist and are unique respectively. We assume the existence of the CS and the CMS throughout the article.
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Knowledge of the central subspace or the central mean subspace is very useful for parsimoniously characterizing the
conditional distribution of y|X or E(y|X). All the existing dimension reduction methods can be classified into three groups
according to the distribution form of interest. Sliced inverse regression (SIR; [14]), sliced average variance estimation
(SAVE; [11]), principal Hessian directions (PHD; [15]), and contour regression (CR; [19]) are among themethods to estimate
the dimension reduction subspace through the inverse conditional distribution of X|y. They are computationally efficient,
but do impose certain probabilistic assumptions on the predictors. Forward regression approach directly targets on the
conditional distribution y|X through the use of kernel smoothing techniques. Xia et al. [29] proposed the minimum average
variance estimation (MAVE) as the first attempt in this category. It is a nice combination of local linear smoothing and
projection pursuit regression. It requires no strong assumptions on the probabilistic structure of predictor X, and can be
applied to time series models as well. MAVE can estimate the directions in the central mean subspace consistently without
undersmoothing the link function. With the use of low dimensional kernel, the refined MAVE (rMAVE) can achieve a faster
consistency rate and better estimation accuracy. The third group, the correlation approach such as Yin et al. [30], investigates
the joint information of (y,X). OLS [16] and PHD [15] can be flexibly regarded as in this group as well.

Since the introduction ofMAVE, many related studies have been carried out to improve this novel tool in both theory and
applications. Antoniadis et al. [2] appliedMAVE to tumor classification using gene expression data. Amato et al. [1] extended
MAVE to functional data analysis. Xia and Härdle [28] applied MAVE to partially linear single-index models so that no√
n-consistent pilot estimator is needed and the choice of bandwidth ismore flexible. Čížek andHardle [6] proposed a robust

version by replacing the least squares with local L- or M- estimation so that MAVE is robust to outliers in the dependent
variable. Wang and Yin [27] incorporated shrinkage estimation to MAVE so that variable selection and dimension reduction
can be achieved simultaneously. Recently, Wang and Xia [26] extended MAVE to the whole central subspace and proposed a
new efficient estimation method called sliced regression (SR).

Despite the nice properties of MAVE as a useful tool in both dimension reduction and semi-parametric modeling, it is not
the most efficient in the semi-parametric sense because of the use of least squares. This is also briefly mentioned in [28]. In
many real applications, the error is very likely to be non-normally distributed and sometimes far from the normal. So it is
natural to treat the error density as another unknown parameter similar to the link function.

In this article, we propose an adaptive estimation procedure based on the combination of kernel density estimation
and MAVE so that the new estimator can be adaptive to different error distributions and thus improves the estimation
efficiency when the error is not normal. We show that the proposed estimate has the same convergence rate as the original
MAVE. A stable EM algorithm is proposed to implement the adaptive estimation. Using a Monte Carlo simulation study,
we demonstrate that the proposed approach provides more efficient estimate than the existing least squares based MAVE
when the error distribution is not normal. In addition, when the error is exactly normal, the new method is comparable to
the existing MAVE. We illustrate the proposed adaptive estimation method with an analysis of a real data set.

The rest of the article is organized as follows. Section 2 introduces the new adaptive estimation approach, including a
brief review of the original MAVE, the adaptive estimation procedure, and the investigation of its asymptotic properties.
Section 3 evaluates the numerical performance of the proposed approach through both simulation studies and a real data
analysis. A short discussion is in Section 4. All technical details are deferred to Appendix.

2. Adaptive MAVE

2.1. A brief review of MAVE

The regression-type model of interest in MAVE can be written as

y = g(BT
0X) + ϵ, (2.1)

where g(·) is an unknown smooth link function, B0 = (β01, . . . , β0D) is a p × D orthogonal matrix (BT
0B0 = ID×D) with the

structural dimension D < p and E(ϵ | X) = 0.
Given a random sample {(Xi, yi), i = 1, . . . , n}, the MAVE estimates the CMS directions B0 by solving the following

minimization problem

min
B,aj,bj,j=1,...,n


n−

j=1

n−
i=1


yi −


aj + bT

j B
T (Xi − Xj)

2
wij


, (2.2)

with respect to aj ∈ R1, bj ∈ Rd andBp×d, whereBTB = Id and d is theworking dimension. The kernelweightwij is a function
of the distance between Xi and Xj satisfying

∑n
i=1 wij = 1. The minimization of (2.2) can be solved iteratively with respect

to {(aj, bj), j = 1, . . . , n} and B separately. The estimation of MAVE is very efficient since only two quadratic programming
problems are involved and both have explicit solutions. To improve the estimation accuracy, a lower dimensional kernel
weight w̃ij as a function of B̃T (Xi − Xj) can be used after an initial estimate B̃was obtained. The use of a smaller bandwidth
in the refined procedure can also improve the consistency rate.

Note that in (2.2), the least square criterion is used. It corresponds to themaximum likelihood estimation (MLE)when the
error is normally distributed. However, when the error distribution is not normal, the existing least squares basedMAVEwill
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lose some efficiency. Therefore, it is desirable to derive an estimatorwhich can be adaptive to different error distributions. In
the following, we will propose such an adaptive estimator based on the extension of the MAVE and kernel density estimate.
In this article, we focusmainly on the estimation of the CMS directions B0 while the structural dimension D is assumed to be
known. To determine the dimension D, the cross-validation approach proposed in [29] and some other information based
criteria can also be applied in our adaptive estimation framework. More details can be found in the previous paper and the
references therein.

2.2. Adaptive estimation of the central mean subspace

Let fϵ(ϵ) be the density function of ϵ. If fϵ is known, one would estimate the CMS directions by maximizing the following
objective function

max
B,aj,bj,j=1,...,n


n−

j=1

n−
i=1

log fϵ

yi −


aj + bT

j B
T (Xi − Xj)


wij


. (2.3)

However, in practice, fϵ is usually unknown but can be estimated by

f̃ϵ(ϵ) =
1
n

n−
i=1

Kh1(ϵ − ϵ̃i),

where Kh1(ν) = h−1
1 K(ν/h1) with K(ν) being a kernel function and h1 being the bandwidth, ϵ̃i = yi − g̃(B̃TXi), and

g̃(B̃TXi) = ãi is the initial estimate based on either the traditional MAVE or other dimension reduction methods. Thus,
our new adaptive MAVE (aMAVE), based on the initial residuals {ϵ̃i, i = 1, . . . , n}, maximizes

ℓ(θ) =

n−
j=1

n−
i=1

log


n−

l=1

Kh1


yi −


aj + bT

j B
T (Xi − Xj)


− ϵ̃l


wij, (2.4)

where θ = {B, (aj, bj), j = 1, . . . , n}, and

wij =
Kh{(Xi − Xj)}
n∑

l=1
Kh{(Xl − Xj)}

,

with Kh(ν) = h−p∏p
k=1 K(νk/h), ν = (ν1, . . . , νp)

T being a p-dimensional vector and h being the bandwidth. The refined
estimate can be obtained by replacing wij with

w̃ij =
Kh2{B̃

T (Xi − Xj)}
n∑

l=1
Kh2{B̃T (Xl − Xj)}

,

where B̃ is an initial estimate of B0.

Theorem 2.1. Suppose that the Conditions C1–C10 in the Appendix hold and model (2.1) is true. Let B be the CMS direction
estimated from the adaptive MAVE. If nhp/ log n → ∞, h → 0, d ≥ D, and h1 = h/ log(n), then

‖(I − BBT )B0‖ = Op(h3
+ hδn + h−1δ2

n),

where δn = {log n/(nhp)}1/2.

It can be seen that our adaptive MAVE achieves the same convergence rate as the traditional MAVE. It would be desirable to
compare the asymptotic variances of both estimators. However, similar to the traditional MAVE, it is not easy to provide the
asymptotic variance and the asymptotic distribution for the proposed adaptive MAVE. Our simulation study demonstrates
that the proposed estimate has better finite sample performance than the existingMAVE for various error distributions. The
bandwidth condition h1 = h/ log(n) is used in [18] for the simplicity of the proof of adaptiveness. As they also indicated, a
wider range of bandwidth for h1 can be used without changing the convergence rate but with more complicated proof.

The idea of adaptiveness is not new. Beran and Stone [3,25] considered adaptive estimation for location models. Bickel,
Drost and Klaassen, Hodgson,Manski, Schick, Steigerwald, Yuan, Yuan andDeGooijer [4,20,24,22,12,13,32,31] extended this
adaptive idea to regression, time series and some other models. Linton and Xiao [18] proposed an adaptive nonparametric
regression estimator by maximizing the estimated local likelihood function, in which the unknown error density was
replaced by a kernel density estimate using some initial regression estimate. Our proposed new estimation procedure uses
similar kernel error idea of Linton and Xiao, Stone [25,18] to gain the adaptiveness based on some consistent initial estimate.
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2.3. Estimation algorithm

Note that the maximizer of (2.4) does not have an explicit formula. In this section, we propose an EM algorithm to
maximize (2.4) by noticing its mixture log-likelihood structure.

Algorithm 2.1. Given the initial estimates {ϵ̃i, i = 1, . . . , n} and the initial value of θ = {B, (aj, bj), j = 1, . . . , n}, denoted
by θ(0), the EM algorithm to maximize (2.4) at the (k + 1)st step is as follows:

E step: find the classification probabilities

p(k+1)
ijl =

wijKh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l


n∑

m=1
Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃m

 .

Mstep: update parameter estimates of θ by maximizing
n−

j=1

n−
i=1

n−
l=1

p(k+1)
ijl log Kh1


yi −


aj + bT

j B
T (Xi − Xj)


− ϵ̃l


,

i.e., minimizing

n−
j=1

n−
i=1

n−
l=1

p(k+1)
ijl


yi −


aj + bT

j B
T (Xi − Xj)


− ϵ̃l

2
, (2.5)

when K(ν) is chosen to be a Gaussian kernel.

Remark 1. The choice of a Gaussian kernel for K(ν) gives us a nice quadratic form as in (2.5). However, the kernel function
in the calculation of wij and w̃ij needs not be Gaussian. Other symmetric kernel functions can be used as well. Note that, as
in most nonparametric regression, the choice of kernel function is not critical in terms of estimation efficiency.

Remark 2. After getting the updated estimate of B, one might also update the refined kernel weight w̃ij to improve the
estimation accuracy but with more computation.

Similar to MAVE, (2.5) can be minimized with respect to {(aj, bj), j = 1, . . . , n} and B iteratively.

1. Given B = B(t), the estimate of (aj, bj) is
a(t+1)
j

b(t+1)
j


=


n−

i=1

n−
l=1

p(k+1)
ijl XijX

T
ij

−1  n−
i=1

n−
l=1

p(k+1)
ijl Xij(yi − ϵ̃l)


, (2.6)

where Xij = (Xi − Xj), Xij = (1, XT
ijB

(t))T .

2. Update Bwith estimated (a(t+1)
j , b(t+1)

j )

vec(B̃(t+1)) =


n−

i=1

n−
j=1

n−
l=1

p(k+1)
ijl XijlXT

ijl

−1  n−
i=1

n−
j=1

n−
l=1

p(k+1)
ijl Xijl(yi − a(t+1)

j − ϵ̃l)


, (2.7)

where vec(B) = (βT
1 , . . . , βT

d )T , Xijl = b(t+1)
j ⊗ Xij and ⊗ represents the Kronecker product.

3. Orthonormalize the estimated B as

B(t+1)
= B̃(t+1)(B̃(t+1)T B̃(t+1))−

1
2 .

4. Repeat step 1 through step 3 until some convergence criterion is met. For example, the matrix norm ‖B(t+1)B(t+1)T
−

B(t)B(t)T
‖ can be used to compare with some pre-specified tolerance value.

The above EM algorithm monotonically increases the local log-likelihood (2.4) after each iteration, as shown in the
following theorem.

Theorem 2.2. Each iteration of the above E and M steps will monotonically increase the local log-likelihood (2.4), i.e.,

ℓ(θ(k+1)) ≥ ℓ(θ(k)),

for all k, where ℓ(·) is defined as in (2.4).
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Table 1
Model 1 estimation accuracy comparisonm2 .

fϵ n = 50, p = 5 n = 50, p = 10 n = 100, p = 5 n = 100, p = 10

1 rMAVE 0.081 0.213 0.038 0.099
aMAVE 0.084 0.212 0.040 0.100

2 rMAVE 0.067 0.169 0.036 0.084
aMAVE 0.055 0.145 0.026 0.067

3 rMAVE 0.106 0.258 0.048 0.123
aMAVE 0.070 0.231 0.022 0.076

4 rMAVE 0.116 0.261 0.046 0.125
aMAVE 0.060 0.187 0.017 0.062

3. Examples

In this section, we first conduct a simulation study to compare our proposed adaptiveMAVE (aMAVE)with the traditional
least squared based refinedMAVE (rMAVE) for different kinds of error densities. Then a baseball hitters’ salary data is applied
to illustrate the new adaptive MAVE. For aMAVE, we simply use a rule of thumb bandwidth h1 = 1.06n−1/5σ̂ for the kernel
density estimate of fϵ(ϵ), where σ̂ is a robust estimate of σ based on the initial residuals {ϵ̃1, . . . , ϵ̃n}, i.e.,

σ̂ = min{(ϵ̃(0.75) − ϵ̃(0.25))/1.34, σ (ϵ̃)},

where ϵ̃(p) is the pth sample quantile of {ϵ̃1, . . . , ϵ̃n} and σ(ϵ̃) is the sample standard deviation of {ϵ̃1, . . . , ϵ̃n}. Better
estimates might be obtained if more sophisticated methods were used to select the bandwidth for the kernel density
estimation. See, for example, [23,21]. The Gaussian kernel is used in the calculation of wij and the choice of bandwidth
follows [29].

3.1. Simulation studies

The following four error distributions fϵ of ϵ (with mean 0 and standard error around 1) are considered in our numerical
experiment. The standard normal distribution serves as a baseline in our comparison. The second one is a scaled t-
distribution with 3 degrees of freedom. The third density is bimodal and the last one is left skewed.
1. N(0, 1);
2. t3/

√
3;

3. 0.5N(−1, 0.52) + 0.5N(1, 0.52);
4. 0.3N(−1.4, 1) + 0.7N(0.6, 0.42).

For each of the above error distributions, we consider the following three models:

Model 1: y = βTX + ϵ, where β = (1, 1, 0, . . . , 0)T/
√
2.

Model 2: y =
βT
1X

0.5+(1.5+βT
2X)2

+ 0.5ϵ, where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 0, . . . , 0)T .

Model 3: y = cos(2βT
1X) − cos(βT

2X) + 0.5ϵ, where β1 = (1, 0, . . . , 0)T and β2 = (0, 1, 0, . . . , 0)T .

Given the generated data {(X1, y1), . . . , (Xn, yn)} where X = (x1, . . . , xp) are independent standard normal random
variables, we estimate the CMS directions based on our new aMAVE and the traditional rMAVE. In order to compare different
estimators, we use the space distance measure m defined as ‖(I − B0BT

0)B‖ if d < D and ‖(I − BBT )B0‖ if d ≥ D [29]. The
number of data replicates is 500.

Let p and n be the dimension of β and the sample size, respectively. Tables 1–3 report the estimation accuracy
comparison based on the average m2 for three models with different combinations of (n, p) and various error distributions
fϵ , respectively. From the summary of all three models, we can see that the proposed aMAVE is comparable to the rMAVE
for normal errors but more efficient than the rMAVE when the error is non-normal and the efficiency gain can be quite
substantial even for small sample sizes.

3.2. Hitters’ salary data

This data concerns the salary of 263 major league baseball hitters in 1987 and their performance. An obvious question
of interest is ‘‘Are they paid based on their performance?’’. It has drawn much attention from statisticians. Among others,
Chaudhuri et al. [5] proposed a piecewise polynomial regression tree (SUPPORT) approach. Li et al. [17] proposed a dimension
reduction based regression tree, PHDRT, and identified several outliers. Xia et al. [29] applied MAVE to find the low
dimensional projection and chose a partially linear model to fit the data. All previous studies suggested using different
models to fit different parts of the data. Along the same line, we split the data into two groups (junior/veteran) based on
‘the years in the major leagues’ and the cutoff is chosen to be 7 as suggested by Chaudhuri et al. [5]. The response variable is
taken to be the logarithm of the annual salary in 1987 as in all previous studies, and the 13 predictors used in our analysis
are listed in Table 4.
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Table 2
Model 2 estimation accuracy comparison (m2

1 ,m
2
2).

fϵ n = 50, p = 5 n = 100, p = 5 n = 100, p = 10 n = 200, p = 5 n = 200, p = 10

1 rMAVE 0.063, 0.196 0.020, 0.043 0.096, 0.215 0.008, 0.013 0.029, 0.060
aMAVE 0.058, 0.191 0.018, 0.041 0.089, 0.205 0.007, 0.012 0.026, 0.053

2 rMAVE 0.055, 0.138 0.016, 0.034 0.082, 0.181 0.006, 0.011 0.028, 0.048
aMAVE 0.050, 0.121 0.012, 0.026 0.066, 0.156 0.004, 0.007 0.020, 0.033

3 rMAVE 0.074, 0.215 0.025, 0.056 0.120, 0.275 0.009, 0.016 0.035, 0.073
aMAVE 0.067, 0.198 0.021, 0.047 0.105, 0.260 0.005, 0.009 0.025, 0.055

4 rMAVE 0.080, 0.223 0.025, 0.058 0.113, 0.273 0.010, 0.017 0.042, 0.077
aMAVE 0.067, 0.202 0.017, 0.040 0.093, 0.243 0.005, 0.008 0.025, 0.048

Table 3
Model 3 estimation accuracy comparison (m2

1 ,m
2
2).

fϵ n = 50, p = 5 n = 100, p = 5 n = 100, p = 10 n = 200, p = 5 n = 200, p = 10

1 rMAVE 0.030, 0.082 0.008, 0.025 0.046, 0.111 0.002, 0.010 0.011, 0.031
aMAVE 0.030, 0.079 0.008, 0.024 0.046, 0.110 0.002, 0.009 0.011, 0.029

2 rMAVE 0.024, 0.070 0.005, 0.022 0.039, 0.070 0.002, 0.009 0.010, 0.028
aMAVE 0.023, 0.059 0.004, 0.017 0.034, 0.061 0.001, 0.006 0.008, 0.020

3 rMAVE 0.043, 0.101 0.009, 0.031 0.063, 0.139 0.003, 0.013 0.015, 0.039
aMAVE 0.040, 0.097 0.007, 0.025 0.059, 0.126 0.002, 0.008 0.010, 0.028

4 rMAVE 0.037, 0.092 0.009, 0.031 0.063, 0.138 0.003, 0.013 0.014, 0.036
aMAVE 0.031, 0.078 0.006, 0.019 0.059, 0.126 0.002, 0.006 0.008, 0.022

Table 4
Hitters’ salary data.

Performance β̂junior β̂veteran

In 1986 x1 time at bat −0.242 0.192
x2 hits 0.372 −0.035
x3 home runs 0.134 −0.016
x4 runs −0.069 0.004
x5 runs batted in −0.115 −0.049
x6 walks 0.111 0.058

Up to 1986 x7 years in major leagues 0.305 −0.206
x8 time at bat −0.113 −0.704
x9 hits 0.751 0.552
x10 home runs −0.048 −0.026
x11 runs 0.164 0.202
x12 runs batted in 0.207 0.266
x13 walks 0.114 0.007

Weapply the adaptiveMAVE to both groups, and one significant direction is identified for each group as shown in Table 4.
The scatter plot of response vs the direction (Fig. 1) shows clear linear patterns in both groups, which is consistent with
previous studies. The sign change of the coefficient estimates for the variable x7 (years in the major league) between the
two groups supports the existence of an ‘aging effect’ as discovered by Li et al. and Xia et al. [17,29].

Furthermore, to compare the performance of our adaptive approach with the traditional MAVE, 100 bootstrap samples
are drawn from the original data. Both aMAVE and rMAVE are applied to each bootstrap sample. The average distance of the
direction estimates from bootstrap samples to the direction from the original data is calculated. For the veteran group, the
average distance from rMAVE is 0.282, compared to 0.240 from aMAVE. For the junior group, the average distances from
rMAVE and aMAVE are 0.571 and 0.564, respectively. A detailed look of the residual Q–Q plots in Fig. 1 from the local linear
estimation might give some explanations to the improvement of aMAVE over rMAVE, especially for the veteran group. For
the junior group, the residual is very close to normal distribution since the Q–Q plot is almost a straight line. Our adaptive
MAVE gives comparable result as rMAVE. But for the veteran group, a clear long tail shows up in the Q–Q plot, which explains
the improved estimation efficiency from aMAVE over rMAVE.

4. Discussion

We have developed an adaptive MAVE to estimate the dimension reduction subspace more efficiently. Its estimation
can be easily implemented with the proposed EM-type algorithm. Based on our empirical study for various error densities
and models, the proposed aMAVE is more efficient than the existing least squares based MAVE, even for small sample sizes,
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(a) Junior group: scatter plot. (b) Veteran group: scatter plot.

(c) Junior group: residual Q–Q plot. (d) Veteran group: residual Q–Q plot.

Fig. 1. Hitters’ salary: the plot of response vs the direction from aMAVE and the residual Q–Q plot.

when the error density is not normally distributed. In addition, the aMAVE is comparable to MAVE if the error distribution
is exactly normal. It is proved that the adaptive MAVE has the same consistency rate as the MAVE.

In this paper, we focus only on estimating the CMS directions through MAVE formulation. The proposed approach can
be easily adapted to other dimension reduction methods. It can also be combined with shrinkage estimation to estimate
the CMS directions and to select informative variables simultaneously. Such extensions are of great interest in our future
research.
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Appendix A. Regularity conditions

C1. {(Xi, yi), i = 1, . . . , n} are iid sequence from the joint density fX,y(x, y).
C2. {εi} are i.i.d. with E(ϵi) = 0, E(|ϵi|

3) < ∞. {Xi} and {εi} are mutually independent. Additionally, the predictor X has a
bounded support.

C3. The density fϵ(·) of ε has bounded continuous derivatives up to order 4. Let ℓ(ε) = log fϵ(ε). Assume ℓ′′′(·) is bounded
and E{ℓ′(ε)2 + |ℓ′′(ε)| + |ℓ′′′(ε)|} < ∞.

C4. E|y|k < ∞ for all k > 0, E‖X‖
k < ∞ for all k > 0.

C5. The density function fX(·) ofX has bounded derivatives up to order 4 and is abounded away from0 in a neighbor around
0.

C6. The density function fy(·) of y has bounded derivative and is bounded away from 0 on a compact support.
C7. The conditional densities fX|y(·) of X given y and f(X0,Xl)|(y0,yl)(·) of (X0,Xl) given (y0, yl) are bounded for all l ≥ 1.
C8. g(·) has bounded, continuous 3rd derivatives.
C9. E(X | y) and E(XXT

| y) have bounded, continuous 3rd derivatives.
C10. K(·) is a spherical symmetric density function with a bounded derivative and support. All the moments of K(·) exist

and

UUTK(U)dU = I .

The above conditions are imposed to facilitate the proof and most of them are similar to Xia et al. [29]. They are not the
weakest possible conditions. For example, for C1, {(Xi, yi), i = 1, . . . , n} can be weakened to be a stationary and absolutely
regular sequence. The independence of {Xi} and {εi} can be also relaxed based on the discussion of Section 4 of Linton and
Xiao [18]. In addition, C4 can be weakened to the existence of finite moments.
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Appendix B. Proof of Theorem 2.1

Note that the estimate θ̂ = {âj, b̂j, j = 1, . . . , n, B̂} is the maximizer of the following objective function

max
B,aj,bj,j=1,...,n


n−

j=1

n−
i=1

log f̃ϵ

yi −


aj + bT

j B
T (Xi − Xj)


wij


, (B.1)

where

f̃ϵ(ϵ) =
1
n

n−
i=1

Kh1(ϵ − ϵ̃i)

is the kernel density estimate of fϵ(·), and ϵ̃i is the residual based on the traditional MAVE estimate. Based on the adaptive
nonparametric regression result of Linton and Xiao [18], the convergence rate of θ̂ in (B.1) is the same as the true density
fϵ(·) is used. Therefore, we will mainly prove the convergence rate of θ̂ assuming fϵ(·) is known. Since the basic idea of our
proof is very similar to Xia et al. [29], we adopt the same notations for the ease of readers to follow.

Let V denote the gradient of g(·) w.r.t its arguments, i.e.,

V(u1, . . . , uD) = ∂g(u1, . . . , uD)/∂U

and Vk(u1, . . . , uD) = ∂g(u1, . . . , uD)/∂uk. Similarly we define V2
k,l(u1, . . . , uD) = ∂2g(u1, . . . , uD)/(∂uk∂ul) and V3

k,l,m
(u1, . . . , uD) = ∂3g(u1, . . . , uD)/(∂uk∂ul∂um), 1 ≤ k, l,m ≤ D.

Based on the Taylor expansion of g(BT
0Xi) for Xi close to x, we have

g(BT
0Xi) = g(BT

0x) + (Xi − x)TB0V(BT
0x) + P2,i(x) + P3,i(x) + Ri(x), (B.2)

where B0 = (β01, . . . ,β0D),

P2,i(x) = h2P2,h,i(x) =
1
2

D−
k,l=1

V2
k,l(B

T
0x){β

T
0k(Xi − x)}{βT

0l(Xi − x)},

P3,i(x) = h3P3,h,i(x) =
1
6

D−
k,l,m=1

V3
k,l,m(BT

0x){β
T
0k(Xi − x)}{βT

0l(Xi − x)}{βT
0m(Xi − x)},

and Ri(x) is defined as the remainder. Let Xh,i(B, x) = (1, (Xi − x)TB/h)T and Kh,i(x) = Kh(Xi − x). Since B0 =

BBTB0 + (I − BBT )B0, we have

yi = XT
h,i(B, x)


g(BT

0x)
BTB0V(BT

0x)h


+ (Xi − x)T (I − BBT )B0V(BT

0x) + h2P2,h,i(x) + h3P3,h,i(x) + Ri(x) + εi. (B.3)

Consider the local likelihood criterion based on local linear kernel smooth

Tn(B, x) =

n−
i=1

ℓ


yi − XT

h,i(B, x)


a(x)
b(x)h


Kh,i(x),

where ℓ(·) = log fϵ(·). Note that for any fixed x and B, {â(x), b̂(x)h} is the maximizer of Tn(B, x). Based on the Taylor
expansion and the order of third derivative of Tn(B, x), we have

â(x)
b̂(x)h


=


g(BT

0x)
BTB0V(BT

0x)h


+ S−1

n (B, x)Wn(B, x)

where

Sn(B, x) = n−1
n−

i=1

Kh,i(x)Xh,i(B, x)XT
h,i(B, x)ℓ′′(εi)(1 + Op(an))

and

Wn(B, x) = n−1
n−

i=1

Kh,i(x)Xh,i(B, x)ℓ′(ri),

with an = h2
+ δn, δn = (nhp)−1/2(log n)1/2, and

ri = yi − XT
h,i(B, x)


g(BT

0x)
BTB0V(BT

0x)h


.
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From Taylor expansion and the bounded ℓ′′′(·), we have
â(x)

b̂(x)h


=


g(BT

0x)
BTB0V(BT

0x)h


+ S−1

n (B, x)n−1
n−

i=1

Kh,i(x)Xh,i(B, x)ℓ′(εi)

+ S−1
n (B, x)n−1

n−
i=1

Kh,i(x)Xh,i(B, x)ℓ′′(εi)(ri − εi). (B.4)

Let

Ln,i(B, x) = (Xi − x)T − XT
h,i(B, x)S−1

n (B, x)n−1
n−

i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x)(Xi − x)T ,

Qn,i(B, x) = XT
h,i(B, x)S−1

n (B, x)n−1
n−

i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x){P2,h,i(x) + P3,h,i(x)h},

Ξn,i(B, x) = XT
h,i(B, x)S−1

n (B, x)n−1
n−

i=1

Kh,i(x)Xh,i(B, x)ℓ′(εi),

Rn,i(B, x) = XT
h,i(B, x)S−1

n (B, x)n−1
n−

i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x)Ri(x).

Replace the estimator of â(x) and b̂(x) in Tn(B, x), we have

n−
j=1

Tn(B,Xj)

ςn(Xj)
=

n−
j=1

n−
i=1

l

Ln,i(B,Xj)(I − BBT )B0V(BT

0Xj) + ∆ij(B)
 Kh,i(Xj)

ς(Xj)
, (B.5)

where ς(x) = n−1∑n
i=1 Kh,i(x), and

∆ij(B) = εi + {P2,h,i(Xj) + P3,h,i(Xj)h}h2
+ Ri(Xj) − Qn,i(B,Xj)h2

− Ξn,i(B,Xj) − Rn,i(B,Xj).

Note that

n−
j=1

Tn(B,Xj)

ςn(Xj)
=

n−
j=1

n−
i=1

l

Ln,i(B,Xj)(I − BBT )β0kVk(BT
0Xj)

+

−
l≠k

Ln,i(B,Xj)(I − BBT )β0lVl(BT
0Xj) + ∆ij(B)


Kh,i(Xj)/ς(Xj). (B.6)

Following [29], we have

(I − BBT )β0k = D−1
k,k

n−
j=1

n−
i=1


ℓ′

−
l≠k

Ln,i(I − BBT )β0lVl + ∆ij


Kh,i(Xj)VkLTn,i


ς−1
n (Xj) (B.7)

where

Dk,l = −

n−
j=1

n−
i=1

ℓ′′

−
l≠k

Ln,i(I − BBT )β0lVl + ∆ij


Kh,iVkVlLTn,iLn,i/ςn(Xj). (B.8)

Since

n−2Dk,l = −n−2
n−

j=1

n−
i=1

ℓ′′(εi)Kh,i(Xj)Vk(BT
0Xj)Vl(BT

0Xj)LTn,i(B,Xj)Ln,i(B,Xj)/ςn(Xj)(1 + op(1))

= −h2n−1
n−

j=1

Vk(BT
0Xj)Vl(BT

0Xj)(I − BBT )E{ℓ′′(ε)} + Op(h3
+ hδn)

and

ℓ′

−
l≠k

Ln,i(I − BBT )β0lVl + ∆ij


=


ℓ′(εi) + ℓ′′(εi)

−
l≠k

Ln,i(I − BBT )β0lVl + ℓ′′(εi)

∆ij(B0) − εi


(1 + op(1)),
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so, we have

− (I − BBT )

D−
l=1

β0l


n−1h2

n−
j=1

Vk(BT
0Xj)Vl(BT

0Xj)E{ℓ′′(ε)} + Op(h3
+ hδn)



= n−2
n−

j=1

n−
i=1

ℓ′(εi)Kh,i(Xj)Vk(BT
0Xj)LTn,i(B,Xj)/ςn(Xj)

+ n−2
n−

j=1

n−
i=1

ℓ′′(εi)Kh,i(Xj)Vk(BT
0Xj)LTn,i(B,Xj){∆ij(B0) − εi}/ςn(Xj) , C1 + C2. (B.9)

Let

Nn(B, x) = S−1
n n−1

n−
i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x)(Xi − x)T ,

then we have

Sn(B, x) =


f (x) BT

∇f (x)h
BT

∇f (x)h f (x)BBT


E{ℓ′′(ε)} + Op(h2

+ δn)

and

Nn(B, x) =


f −1(x)∇T f (x)(I − BBT )h2

BTh


+ Op(h3

+ hδn).

Therefore,

n−1
n−

i=1

ℓ′′(εi)Kh,i(x){Ln,i(B, x)}TΞn,i(B, x) = n−1
n−

i=1

ℓ′′(εi)Kh,i(x)(Xi − x)XT
h,i(B, x)S−1

n n−1
n−

i=1

Kh,i(x)Xh,i(B, x)ℓ′(εi)

−NT
n (B, x)n−1

n−
i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x)XT
h,i(B, x)S−1

n n−1
n−

i=1

Kh,i(x)Xh,i(B, x)ℓ′(εi)

= NT
n (B, x)n−1

n−
i=1

Kh,i(x)Xh,i(B, x)ℓ′(εi) − NT
n (B, x)n−1

n−
i=1

Kh,i(x)Xh,i(B, x)ℓ′(εi)(1 + Op(an))

= Op(h3δn + hδ2
n),

and

n−2
n−

j=1

n−
i=1

ℓ′′(εi)Kh,i(Xj)Vk(BT
0Xj)LTn,i(B,Xj)Ξn,i(B, x)/ςn(Xj) = Op(h3δn + hδ2

n). (B.10)

Note that

n−1
n−

i=1

ℓ′′(εi)Kh,i(x){Ln,i(B, x)}T [P2,h,i(x) + P3,h,i(x)h − Qn,i(B, x)]

= n−1
n−

i=1

ℓ′′(εi)Kh,i(x)(Xi − x)[P2,h,i(x) + P3,h,i(x)h − Qn,i(B, x)]

−NT
n (B, x)n−1

n−
i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x)[P2,h,i(x) + P3,h,i(x)h − Qn,i(B, x)]

= n−1
n−

i=1

ℓ′′(εi)Kh,i(x)(Xi − x)[P2,h,i(x) + P3,h,i(x)h]

−NT
n (B, x)n−1

n−
i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x)[P2,h,i(x) + P3,h,i(x)h].

Since the expectation of the right-hand side can be calculated by taking expectationwith respect to εi at first, which gives
E{ℓ′′(εi)}, following the results in Xia et al. [29], we have

n−2h2
n−

j=1

n−
i=1

ℓ′′(εi)Kh,i(Xj)Vk(BT
0Xj)LTn,i(B,Xj)[P2,h,i(x) + P3,h,i(x)h − Qn,i(B, x)]/ςn(Xj)

= (I − BBT )B0n−1
n−

j=1

f −1(Xj)


V̄(Xj) −

1
2

D−
l=1

V2
l,l(B

TXj)B0∇f (x)


E{ℓ′′(ε)}h4

+ Op(h5
+ h3δn), (B.11)
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where V̄(BT
0x) = Ṽ2(BT

0x)B
T
0∇f (x) + Ṽ3(BT

0x) with Ṽ2(BT
0x) being a D × D matrix of the upper left part of∑D

m,l=1


V2
m,l(B

T
0x) ×


K(U)UUTulumdU


, κ4 =


u4K(u)du and

B0Ṽ3(BT
0x) =

1
6


D−

l=1

V3
l,l,l(B

T
0x)κ4β0l +

−
m≠l

V3
m,m,l(B

T
0x)β0l


.

Similarly we have

n−1
n−

i=1

ℓ′′(εi)Kh,i(x)LTn,i(B, x)[Ri(x) − Rn,i(B, x)]

= n−1
n−

i=1

ℓ′′(εi)Kh,i(x)(Xi − x)Ri(x) − NT
n (B, x)n−1

n−
i=1

ℓ′′(εi)Kh,i(x)Xh,i(B, x)Ri(x)

= Op(h5),

and

n−2
n−

j=1

n−
i=1

ℓ′′(εi)Kh,i(Xj)Vk(BT
0Xj)LTn,i(B,Xj)[Ri(x) − Rn,i(B, x)]/ςn(Xj) = Op(h5). (B.12)

Therefore, from (B.10)–(B.12) we have

C2 = (I − BBT )B0n−1
n−

j=1

f −1(Xj)


V̄(Xj) −

1
2

D−
l=1

V2
l,l(B

TXj)B0∇f (x)


E{ℓ′′(ε)}h4

+ Op(h5
+ h3δn + hδ2

n). (B.13)

Next we will check the order of C1. Note that,

n−1
n−

i=1

Kh,i(x)LTn,i(B, x)ℓ′(εi) = n−1
n−

i=1

Kh,i(x)(Xi − x)ℓ′(εi)

− n−1
n−

i=1

ℓ′′(εi)Kh,i(x)(Xi − x)XT
h,i(B, x)S−1

n n−1
n−

i=1

Kh,i(x)ℓ′(εi)Xh,i(B, x)

= n−1
n−

i=1

Kh,i(x)(Xi − x)ℓ′(εi) − NT
n (B, x)n−1

n−
i=1

Kh,i(x)Xh,i(B, x)ℓ′(εi).

= n−1
n−

i=1

Kh,i(x)(Xi − x)ℓ′(εi) − n−1f −1(x)(I − BBT )h2
∇f (x)

n−
i=1

Kh,i(x)ℓ′(εi)

− n−1BBT
n−

i=1

Kh,i(x)(Xi − x)ℓ′(εi) + Op(h3δn + hδ2
n)

= (I − BBT )n−1


n−

i=1

Kh,i(x)(Xi − x)ℓ′(εi) −
h2

f (x)
∆f (x)

n−
i=1

Kh,i(x)ℓ′(εi)


+ Op(h3δn + hδ2

n),

since E{ℓ′(ε)} = 0, we have

C1 = n−2
n−

j=1

n−
i=1

Kh,i(Xj)Vk(BT
0Xj)LTn,i(B,Xj)ℓ

′(εi)/ςn(Xj) = Op(δnh3
+ hδ2

n). (B.14)

Therefore, from (B.13) and (B.14),

−(I − BBT )

D−
l=1

β0l


n−1h2

n−
j=1

Vk(BT
0Xj)Vl(BT

0Xj)E{ℓ′′(ε)} + Op(h3
+ hδn)



= (I − BBT )B0n−1
n−

j=1

f −1(Xj)


V̄(Xj) −

1
2

D−
l=1

V2
l,l(B

TXj)B0∆f (x)


E{ℓ′′(ε)}h4

+ Op(h5
+ h3δn + hδ2

n),

for k = 1, . . . ,D. Hence,

(I − BBT )B0n−1
n−

j=1

V(BT
0Xj)VT (BT

0Xj)E{ℓ′′(ε)} = Op(h3
+ hδ + h−1δ2

n).

Since n−1∑n
j=1 V(BT

0Xj)VT (BT
0Xj) = Op(1), we have

‖(I − BBT )B0‖ = Op(h3
+ hδ + h−1δ2

n).
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Appendix C. Proof of Theorem 2.2

Note that

ℓ(θ(k+1)) − ℓ(θ(k)) =

n−
j=1

n−
i=1

log


n∑

l=1
Kh1


yi −


a(k+1)
j + b(k+1)

j
T
B(k+1)T (Xi − Xj)


− ϵ̃l


n∑

l=1
Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l


wij

=

n−
j=1

n−
i=1

log


n−

l=1

 Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l


n∑

l=1
Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l



×

Kh1


yi −


a(k+1)
j + b(k+1)

j
T
B(k+1)T (Xi − Xj)


− ϵ̃l


Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l


wij

=

n−
j=1

n−
i=1

log

 n−
l=1

p(k+1)
ijl

Kh1


yi −


a(k+1)
j + b(k+1)

j
T
B(k+1)T (Xi − Xj)


− ϵ̃l


Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l


wij,

where

p(k+1)
ijl =

Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l


n∑

l=1
Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l

 .

From the Jensen’s inequality, we have

ℓ(θ(k+1)) − ℓ(θ(k)) ≥

n−
j=1

n−
i=1

 n−
l=

p(k+1)
ijl log

Kh1


yi −


a(k+1)
j + b(k+1)

j
T
B(k+1)T (Xi − Xj)


− ϵ̃l


Kh1


yi −


a(k)
j + b(k)

j
T
B(k)T (Xi − Xj)


− ϵ̃l


wij

 .

Based on the property ofM-step of (2.5), we have ℓ(θ(k+1)) − ℓ(θ(k)) ≥ 0.
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